
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 18 – Program Design (cont)

www.umbc.edu

Last Class We Covered

• Tuples

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Dictionaries vs Lists

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Announcement – Survey #2

• Available now on Blackboard

• Due by Sunday, November 13, at midnight

– Check completion under “My Grades”

• Some statistics (from Fall 2015):

– If they had taken the surveys…

• 9 students would have gotten an A instead of a B

• 4 students would have gotten a B instead of a C

• 9 students would have gotten a C instead of a D

4

www.umbc.edu

Today’s Objectives

• To discuss the details of “good code”

• To learn how to design a program

• How to break it down into smaller pieces

– Top Down Design

• To introduce two methods of implementation

– Top Down and Bottom Up

• To learn more about Incremental Programming

5

www.umbc.edu

Motivation

• We’ve talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

–What are some of them?

• There are two main reasons for this

–Readability

–Adaptability

6

www.umbc.edu7

“Good Code” – Readability

www.umbc.edu

Readability

• Having your code be readable is important,
both for your sanity and anyone else’s

– Your TA’s sanity is important

• Having highly readable code makes it easier to:

– Figure out what you’re doing while writing the code

– Figure out what the code is doing when you come
back to look at it a year later

– Have other people read and understand your code

8

www.umbc.edu

Improving Readability

• Improving readability of your code can be
accomplished in a number of ways

– Comments

– Meaningful variable names

– Breaking code down into functions

– Following consistent naming conventions

– Programming language choice

– File organization

9

www.umbc.edu

Readability Example

• What does the following code snippet do?
def nS(p, c):

l = len(p)

if (l >= 4):

c += 1

print(p)

if (l >= 9):

return p, c

FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

10

www.umbc.edu

Readability Example

• What if I added meaningful variable names?
def nS(p, c):

l = len(p)

if (l >= 4):

c += 1

print(p)

if (l >= 9):

return p, c

FUNCTION CONTINUES...

11

www.umbc.edu

Readability Example

• What if I added meaningful variable names?
def nextState(password, count):

length = len(password)

if (length >= 4):

count += 1

print(password)

if (length >= 9):

return password, count

FUNCTION CONTINUES...

12

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

length = len(password)

if (length >= 4):

count += 1

print(password)

if (length >= 9):

return password, count

FUNCTION CONTINUES...

13

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password, count

FUNCTION CONTINUES...

14

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password, count

FUNCTION CONTINUES...

15

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password, count

FUNCTION CONTINUES...

16

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password, count

FUNCTION CONTINUES...

17

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

length = len(password)

if long enough, count as a password

if (length >= MIN_LENGTH):

count += 1

print(password)

if max length, don't do any more

if (length >= MAX_LENGTH):

return password, count

FUNCTION CONTINUES...

18

www.umbc.edu

Readability Example

• Now the purpose of the code is a bit clearer!

– You can see how small, simple changes increase
the readability of a piece of code

• This is actually part of a function that creates a list of
the passwords for a swipe-based login system on an
Android smart phone

• Dr. Gibson wrote a paper on this, available here

19

http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

www.umbc.edu20

Commenting

www.umbc.edu

Commenting is an “Art”

• Though it may sound pretentious, it’s true

• There are NO hard and fast rules for when a
piece of code should be commented

– Only guidelines

– NOTE: This doesn’t apply to required comments
like file headers and function headers!

21

www.umbc.edu

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

22

www.umbc.edu

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

23

This backslash symbol tells
Python that the code will
continue on the next line.

www.umbc.edu

General Guidelines

• Don’t write obvious comments
iterate over the list

for item in myList:

• Don’t comment every line
initialize the loop variable

choice = 1

loop until user chooses 0

while choice != 0:

24

www.umbc.edu

General Guidelines

• Do comment “blocks” of code

calculate tip and total - if a party is

large, set percent to minimum of 15%

if (numGuests > LARGE_PARTY):

percent = MIN_TIP

tip = bill * percent

total = bill + tip

25

www.umbc.edu

General Guidelines

• Do comment nested loops and conditionals
listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

iterate over both lists, checking to see if each

fibonacci number is also in the prime list

for num1 in listFib:

for num2 in listPrime:

if (num1 == num2):

print(num1, "is both a prime and a \

Fibonacci number!")

26

www.umbc.edu

General Guidelines

• Do comment very abbreviated variables names
(especially those used for constants)

– You can even put the comment at the end of the line!

MIN_CH = 1

MAX_CH = 5

MENU_EX = 5

P1_MARK = "x"

P2_MARK = "o"

27

minimum choice at menu

maximum choice at menu

menu choice to exit (stop)

player 1's marker

player 2's marker

www.umbc.edu

Side Note: Global Constants

• Globals are variables declared outside
of any function (including main())

• Accessible to all functions and code in the file

• Your programs may not have global variables

• Your programs may use global constants

– In fact, constants should generally be global

28

www.umbc.edu

Side Note: Global Constants

• A constant defines a number (or string) once,
and we use the constant instead of the value

• Constants are often used in multiple functions

– Being global means they’re available to all functions

• A global variable will show up
in a different font color from
regular variables or code

29

www.umbc.edu30

“Good Code” – Adaptability

www.umbc.edu

Adaptability

• Often, what a program is supposed to do
evolves and changes as time goes on

– Well-written flexible programs can be easily
altered to do something new

– Rigid, poorly written programs often take a lot of
work to modify

• When coding, keep in mind that you might
want to change or extend something later

31

www.umbc.edu

Adaptability: Example

• Remember how we talked about not using
“magic numbers” in our code?

32

Bad:

def makeSquareGrid():

temp = []

for i in range(0, 10):

temp.append([0] * 10)

return temp

Good:

def makeSquareGrid():

temp = []

for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)

return temp

0 and 1 are not “magic”
numbers – why?

www.umbc.edu

Adaptability: Example

• We can change makeSquareGrid()

to be an even more flexible function

33

Better:

def makeSquareGrid(size):

temp = []

for i in range(0, size):

temp.append([0] * size)

return temp

call makeSquareGrid

grid = makeSquareGrid(GRID_SIZE)

Good:

def makeSquareGrid():

temp = []

for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)

return temp

www.umbc.edu34

Solving Problems

www.umbc.edu

Simple Algorithms

• Input

– What information we will be given, or will ask for

• Process

– The steps we will take to reach our specific goal

• Output

– The final product that we will produce

35

www.umbc.edu

More Complicated Algorithms

• We can apply the same principles of input,
process, output to more complicated
algorithms and programs

• There may be multiple sets of input/output,
and we may perform more than one process

36

www.umbc.edu

Complex Problems

• If we only take a problem in one piece, it may
seem too complicated to even begin to solve

–A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

–Creating a video game from scratch

37

www.umbc.edu38

Top Down Design

www.umbc.edu

Top Down Design

• Computer programmers often use a divide
and conquer approach to problem solving:

– Break the problem into parts

– Solve each part individually

– Assemble into the larger solution

• One component of this technique is
known as top down design

39

www.umbc.edu

Top Down Design

• Breaking the problem down into pieces makes it
more manageable to solve

• Top-down design is a process in which:

– A big problem is broken down into small sub-problems

• Which can themselves be broken down into even
smaller sub-problems

–And so on and so forth…

40

www.umbc.edu

Top Down Design: Illustration

• First, start with a
clear statement of
the problem or
concept

• A single big idea

41

Big Idea

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

42

Big Idea

Part 1 Part 2 Part 3

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

• If any of those parts
can be further
broken down, then
the process
continues…

43

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B

www.umbc.edu

Top Down Design: Illustration

• And so on…

44

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• Your final design
might look like this
chart, which shows
the overall structure
of the smaller pieces
that together make
up the “big idea” of
the program

45

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• This is like an
upside-down “tree,”
where each of the
nodes represents a
process (or a
function)

46

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• The bottom nodes
are “leaves” that
represent pieces
that need to be
developed

• They are then
recombined to
create the solution to
the original problem

47

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Analogy: Paper Outline

• Think of it as an outline for a paper you’re
writing for a class assignment

• You don’t just start writing things down!

– You come up with a plan of the important points
you’ll cover, and in what order

– This helps you to formulate your thoughts as well

48

www.umbc.edu49

Implementing a Design in Code

www.umbc.edu

Bottom Up Implementation

• Develop each of the
modules separately

– Test that each one
works as expected

• Then combine into
their larger parts

– Continue until the
program is complete

50

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Bottom Up Implementation

• To test your functions, you will probably use
main() as a (temporary) test bed

– You can even call it testMain() if you want

• Call each function with different test inputs

– How does function ABC handle zeros?

– Does this if statement work right if XYZ?

– Ensure that functions “play nicely” together

51

www.umbc.edu

Top Down Implementation

• Create “dummy” functions that fulfill the
requirements, but don’t perform their job

– For example, a function that is supposed to take in
a file name and return the weighted grades; it
takes in a filename, but then simply returns a 1

• Write up a “functional” main() that calls
these dummy functions

– Helps to pinpoint other functions you may need

52

www.umbc.edu

Which To Choose?

• Top down? Or bottom up?

• It’s up to you!

–As you do more programming, you will
develop your own preference and style

• For now, just use something – don’t code up
everything at once without testing anything!

53

www.umbc.edu54

Design Example

www.umbc.edu

Questions when Designing

• What is the “big picture” problem?

• What sort of tasks do you need to handle?

– What functions would you make?

– How would they interact?

– What does each function take in and return?

• What will your main() look like?

55

www.umbc.edu

In-Class Example

• A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

• Spend a few minutes brainstorming now

– “Big picture” problem

– Tasks that need to be handled

– What main() looks like

56

www.umbc.edu

In-Class Example

• Specifics:

– Get underlying data:

• Availabilities (probably read in from a file)

• Class offering frequency (again, from a file)

• Professor rating (from, you guessed it, a file)

• How to obtain this information in the first place?

– Ask user what courses they want to take

– Find out how many semesters they have left

– etc…

57

www.umbc.edu58

Incremental Development

www.umbc.edu

What is Incremental Development?

• Developing your program in small increments

1. Program a small piece of the program

2. Run and test your program

3. Ensure the recently written code works

4. Address any errors and fix any bugs

5. Return to step 1

59

www.umbc.edu

Why Use Incremental Development?

• Incremental development:

–Makes a large project more manageable

– Leads to higher quality code

–Makes it easier to find and correct errors

– Is faster for large projects

• May seem like you’re taking longer since you
test at each step, but faster in the long run

60

www.umbc.edu

Debugging Woes

• Writing code is easy...

• Writing code that works correctly is HARD

• Sometimes the hardest part of debugging is
finding out where the error is coming from

– And solving it is the easy part (sometimes!)

• If you only wrote one function, you can start
by looking there for the error

61

www.umbc.edu

Announcements

• Survey #2 is out

– Due Sunday, Nov 13 @ 11:59 PM

• Project 1 is due next Wednesday

– It is much harder than the homeworks

– No collaboration allowed

– Start early

– Think before you code

– Come to office hours
62

